

San Jose Water Water Quality 1221A S Bascom Ave, San Jose CA 95128

Report on Water Quality Relative to Public Health Goals

Published July 2022

San Jose Water Report on Water Quality Relative to Public Health Goals

Contents

Background	
What are PHGs?	
Water Quality Data Considered	
Guidelines Followed	
Best Available Treatment Technology and Cost Estimates4	
Constituents Detected that Exceed a PHG or a MCLG4	
Arsenic4	
Radionuclides	
Uranium	
Radium 2285	
Bromate	
Lead 6	
Conclusions	
Appendix 1: MCLs, DLRs, and PHGs for Regulated Drinking Water Contaminants	
Appendix 2: Health Risk Categories and Cancer Risk Values for Chemicals	}
Appendix 3: Cost Estimates)

Background

California Health and Safety Code provisions require that water utilities serving more than 10,000 service connections prepare a special report by July 1, every three years if water quality measurements on water supplied to consumers have exceeded any Public Health Goals (PHGs). PHGs are non-enforceable goals established by the California Environmental Protection Agency's (Cal-EPA's) Office of Environmental Health Hazard Assessment (OEHHA). They are developed as goals because they are purely health-based objectives and may not be technically or economically feasible to achieve. The law also requires that where OEHHA has not adopted a PHG for a constituent, the water suppliers are to use the Maximum Contaminant Level Goals (MCLGs) adopted by United States Environmental Protection Agency (USEPA). MCLGs are also non-enforceable, strictly health-based constituent levels. A Maximum Contaminant Level (MCL) is the legal threshold limit set by the USEPA or the California Division of Drinking Water (DDW) that water systems must comply with MCLs based on health concerns are referred to as Primary MCLs, and MCLs based on aesthetic concerns are referred to as Secondary MCLs (SMCLs). Only constituents which have a primary MCL and either a PHG or MCLG are to be addressed in this report. Attachment No. 1 is a list of all regulated constituents and their MCLs and PHGs or MCLGs.

If a constituent was detected in SJW's water supply between 2019 and 2021 at a level exceeding an applicable PHG or MCLG, this report provides the legally required information on those constituents.

What are PHGs?

PHGs are set by the California Office of Environmental Health Hazard Assessment (OEHHA) and are based solely on public health risk considerations. None of the risk management factors that are considered by the USEPA or the DDW in setting drinking water quality standards is considered in setting the PHGs. These factors include analytical detection capability, treatment technology availability, benefits, and costs. When calculating a PHG, OEHHA identifies the level of the chemical in drinking water that would not cause significant adverse health effects in people who drink two liters of that water every day for 70 years. The PHGs are not enforceable and are not required to be met by any public water system. MCLGs are the federal equivalent to PHGs, but may not be identical.

Water Quality Data Considered

All of the water quality data collected by SJW for purposes of determining compliance with drinking water standards during the years 2019, 2020, and 2021 was considered for this report. These data were summarized in our 2019, 2020, and 2021 Annual Water Quality Reports. These reports are made available to all of our customers annually. The most recent Annual Water Quality report is posted on our website at http://www.sjwater.com/ccr.

Most of the constituents monitored are not listed or reported in the water quality report because they were not detected. This means that either the constituent was below the detection threshold of the laboratory instruments or that it was detected at a level less than the *detection level for purposes of reporting* (DLR). The DLR is the level above which any analytical finding of a contaminant in drinking water resulting from required monitoring must be reported to DDW.

Guidelines Followed

The Association of California Water Agencies (ACWA) formed a workgroup that prepared guidelines for water utilities to use in preparing these reports. These guidelines were used in the preparation of our report. No other guidance was available from state regulatory agencies.

Best Available Treatment Technology and Cost Estimates

Both the USEPA and the DDW adopt what are known as Best Available Technologies (BATs), which are the best known methods of reducing contaminant levels to the MCL. Costs can be estimated for such technologies, and a table of known costs for instances where BATs have been implemented is included in Appendix 3. Many PHGs and MCLGs are set significantly lower than the MCL. In such cases, BATs may not be feasible to reduce a contaminant's levels down to the PHG or MCLG, many of which are set at zero. Since there is little data available to estimate cost of treatment to achieve absolute zero levels, rough estimates of BATs may be used, but implementation of BATs still may not achieve the PHG or MCLG, and the costs to do so may be prohibitive.

Constituents Detected that Exceed a PHG or a MCLG

The following is a discussion of constituents that were detected in one or more of SJW's drinking water sources during monitoring for years 2019, 2020, and 2021 compliance at levels above the PHG, or above the MCLG if there is no PHG. Table 1 below summarizes the constituents detected above the PHGs in SJW water samples collected in 2019-2021.

Contaminant	Sample Date	Unit	CA MCL/[AL]	PHG/MCLG	Detections
Arsenic	2019-2021	mg/L	0.01	0.000004	ND-0.004
Uranium	2019-2021	pCi/L	20	0.43	ND-1.3
Radium 228	2019	pCi/L	5 pCi/L (Combined Ra226+228)	0.019 pCi/L	ND-2.6
Bromate	2019-2021	mg/L	0.01	0.0001	ND-0.008
Lead	2019-2021	mg/L	0.015*	0.0002	ND-0.006

Table 1. Constituents detected above PHGs between 2019 and 2021

*90th percentile numbers determined by Lead and Copper Rule Monitoring

Arsenic

Arsenic is a naturally occurring element found in the earth's crust. As water flows through certain rock formations, the arsenic can dissolve and be carried into underground aquifers, streams or rivers that may be drinking water sources. Exposure to arsenic in drinking water over a long period of time is associated with diabetes and increased risk of cancers of the bladder, lungs, liver, and other organs.

Data collected between 2019 and 2021, from monitoring conducted at all groundwater wells in San Jose Water's distribution system ranged from ND to 0.004 mg/L, which is above the PHG for arsenic of 0.000004 mg/L. All results, however, are well below the current federal MCL of 10 mg/L and the CA MCL of 0.01 mg/L.

The DDW lists the Best Available Technologies (BATs) for removing arsenic to below the MCL as activated alumina, ion exchange (IX), lime softening, coagulation/filtration and reverse osmosis (RO). For the purpose of cost estimation, IX was selected as the treatment method to consistently remove arsenic below the PHG. The estimated cost to install and operate such a treatment system at one of SJW's largest well fields to reliably reduce the arsenic levels to zero would be approximately \$28,800,000 to construct with additional O&M costs of \$324/MG and an annual O&M of \$900,000/year.

Radionuclides

Uranium

Uranium is a naturally occurring radioactive element present in varying amounts in rocks and soil within the earth's crust. Under natural conditions, uranium leaches into groundwater from uranium bearing rocks. In general, surface water is low in uranium; however, deep bedrock aquifers used for drinking water sometimes contain uranium above regulatory standards. Groundwater, which flows through pores in underground layers of rock, dissolves minerals as it flows. If the rock contains significant amounts of uranium, and the groundwater moves at a slow enough rate, the water picks up higher amounts of uranium.

Exposure to uranium over a long period may result in increased risk of diseases such as bone cancer, lymphoma, leukemia, and aplastic anemia. The MCL set for uranium is well below levels at which health effects have been observed, and, hence, is assumed to protect public health. BATs determined by the EPA for removal of radionuclides in drinking water include Ion Exchange, Lime Softening, and Reverse Osmosis.

Data collected between 2019 and 2021, from monitoring conducted at all groundwater wells in San Jose Water's distribution system ranged from ND to 1.4 pCi/L, which is above the PHG for uranium of 0.43 pCi/L. All results, however, are well below the current CA MCL of 20 pCi/L. San Jose Water will continue to monitor levels of radioactivity throughout the distribution system according to DDW recommendations.

The DDW lists the BATs for removing uranium as ion exchange (IX), reverse osmosis (RO), lime softening, or coagulation/filtration. For the purpose of cost estimation, IX was selected as the treatment method to consistently remove arsenic below the PHG. The estimated cost to install and operate such a treatment system at one of SJW's largest well fields to reliably reduce the uranium levels to zero would be approximately \$28,800,000 to construct with additional O&M costs of \$324/MG and an annual O&M of \$900,000/year

Radium 228

Radium is a naturally occurring radioactive element present in varying amounts in rocks and soil within the earth's crust. There are several forms of radium but the most common forms found in groundwater are radium 226 (Ra-226) and radium 228 (Ra-228). Under natural conditions, radium leaches into groundwater from surrounding bedrock. In general, surface water is low in radium; however, deep bedrock aquifers used for drinking water sometimes contain radium above regulatory standards. Data collected between 2019 and 2021 from monitoring conducted at all groundwater wells in San Jose Water's distribution system ranged from ND to 2.6 pCi/L, which is above the 0.019 piC/L PHG for radium 228 . All results, however, are well below the combined radium 226 +228 MCL of 5 piC/L. For the purpose of cost estimation, IX was selected as the treatment method to consistently remove radium below the PHG.

Bromate

Bromate is a compound that can be formed during the disinfection of drinking water when chlorine or ozone reacts with naturally occurring bromide ions in the water. Long-term exposure to bromate has been linked to an increased risk of cancer and kidney disease. Natural organic matter, pH, and temperature all affect the amount of bromate formed during the disinfection of drinking water. As bromate is known to be carcinogenic, the USEPA has set the MCL at 0.01 mg/L, a concentration significantly lower than that at which any known health effects occur.

Between 2019 and 2021, samples from Valley Water surface water within San Jose Water's distribution system exceeded the PHG of 0.00001, but were well under the MCL of 0.01 mg/L. The USEPA has identified the BAT for achieving compliance with maximum residual disinfectant levels of bromate and other disinfection byproducts to be through control of treatment processes in order to reduce disinfectant demand and control of disinfection treatment processes to reduce disinfectant levels. San Jose Water attempts to control treatment processes in compliance with these standards and will continue to monitor levels of disinfection byproducts according to DDW recommendations in order to ensure that these levels do not approach the MCL. SJW has complied with all state and federal regulations regarding bromate through 2019, 2020, and 2021.

Lead

Lead has toxic effects on many systems of the body, particularly on the developing nervous system, the hematological and cardiovascular systems, and the kidney. There is no MCL for lead. Instead, the 90th percentile values of all samples from household taps in the distribution system cannot exceed an Action Level of 0.015 mg/l for lead. The PHG for lead is 0.002 mg/L. All 90th percentile values of all lead monitoring conducted in 2019 were been below the DLR. Based on extensive sampling of our distribution system, SJW remains in full compliance with the Federal and State Lead and Copper Rule.

Lead is rarely detected in SJW source water. However, lead and other metals may be naturally present at low levels in groundwater due to the erosion of natural deposits. In 2021 one groundwater sample among 84 collected exceeded the PHG of 0.002 mg/L at 0.006 mg/L. Subsequent sampling of lead in source water at the location were the one PHG exceedance occurred have consistently shown levels below the PHG.

The DDW lists the Best Available Technologies (BATs) for removing inorganic metals to below the MCL as ion exchange, lime softening, and reverse osmosis (RO). Due to the fact that SJW has not been able to replicate the exceedance in follow up sampling it is not prudent to initiate additional treatment at this time. Therefore, no estimate of cost has been included. San Jose Water will continue to monitor source water according to DDW recommendations.

Conclusions

Overall, five contaminants were detected in the water served by SJW at concentrations above the PHGs and or MCLGs. SJW did not serve water that contained contaminants in violation of recognized and enforceable MCLs. The drinking water provided by San Jose Water meets all State of California and USEPA drinking water standards set to protect public health.

Additional costly treatment processes would be required to further reduce the levels of the constituents identified in this report. The effectiveness of these treatment processes is uncertain. The health protection benefits of these further hypothetical reductions are not clear and may not be quantifiable. Therefore, no action is proposed. This assessment is consistent with the recommendations of California Division of Drinking Water.

Appendix 1: MCLs, DLRs, and PHGs for Regulated Drinking Water Contaminants

Appendix 1 2019 PHG Triennial Report: Calendar Years 2019-2020-2021

MCLs, DLRs, and PHGs for Regulated Drinking Water Contaminants

(Units are in milligrams per liter (mg/L), unless otherwise noted.)

Last Update: September 14, 2021

This table includes:

California's maximum contaminant levels (MCLs)

Detection limits for purposes of reporting (DLRs)

Public health goals (PHGs) from the Office of Environmental Health Hazard Assessment (OEHHA)

Also, the PHG for NDMA (which is not yet regulated) is included at the bottom of this table.

Regulated Contaminant	MCL	DLR	PHG	Date of PHG			
Chemicals with MCLs in 22 CCR §64431—Inorganic Chemicals							
Aluminum	1	0.05	0.6	2001			
Antimony	0.006	0.006	0.001	2016			
Arsenic	0.010	0.002	0.000004	2004			
Asbestos (MFL = million fibers per liter; for fibers >10 microns long)	7 MFL	0.2 MFL	7 MFL	2003			
Barium	1	0.1	2	2003			
Beryllium	0.004	0.001	0.001	2003			
Cadmium	0.005	0.001	0.00004	2006			
Chromium, Total - OEHHA withdrew the 0.0025-mg/L PHG	0.05	0.01	withdrawn Nov. 2001	1999			
Chromium, Hexavalent - 0.01-mg/L MCL & 0.001-mg/L DLR repealed September 2017			0.00002	2011			
Cyanide	0.15	0.1	0.15	1997			
Fluoride	2	0.1	1	1997			
Mercury (inorganic)	0.002	0.001	0.0012	1999 (rev2005)*			
Nickel	0.1	0.01	0.012	2001			
Nitrate (as nitrogen, N)	10 as N	0.4	45 as NO3 (=10 as N)	2018			
Nitrite (as N)	1 as N	0.4	1 as N	2018			
Nitrate + Nitrite (as N)	10 as N		10 as N	2018			
Perchlorate	0.006	0.004	0.001	2015			
Selenium	0.05	0.005	0.03	2010			
Thallium	0.002	0.001	0.0001	1999 (rev2004)			
Copper and Lead, 22 CCR §64672.3							
Values referred to as MCLs for lead and copper are not actually MCLs; instead, they are called "Action Levels" under the lead and copper rule							
Copper	1.3	0.05	0.3	2008			

Lead	0.015	0.005	0.0002	2009			
Radionuclides with MCLs in 22 CCR §64441 and §64443—Radioactivity							
[units are picocuries per liter (pCi/L),	[units are picocuries per liter (pCi/L), unless otherwise stated; n/a = not applicable]						
Gross alpha particle activity - OEHHA concluded in 2003 that a PHG was not practical	15	3	none	n/a			
Gross beta particle activity - OEHHA concluded in 2003 that a PHG was not practical	4 mrem/yr	4	none	n/a			
Radium-226		1	0.05	2006			
Radium-228		1	0.019	2006			
Radium-226 + Radium-228	5						
Strontium-90	8	2	0.35	2006			
Tritium	20,000	1,000	400	2006			
Uranium	20	1	0.43	2001			
Chemicals with MCLs in 22 CCR §64444—Organic Chemicals							
(a) Volatile Org	anic Chemic	als (VOCs)					
Benzene	0.001	0.0005	0.00015	2001			
Carbon tetrachloride	0.0005	0.0005	0.0001	2000			
1,2-Dichlorobenzene	0.6	0.0005	0.6	1997 (rev2009)			
1,4-Dichlorobenzene (p-DCB)	0.005	0.0005	0.006	1997			
1,1-Dichloroethane (1,1-DCA)	0.005	0.0005	0.003	2003			
1,2-Dichloroethane (1,2-DCA)	0.0005	0.0005	0.0004	1999 (rev2005)			
1,1-Dichloroethylene (1,1-DCE)	0.006	0.0005	0.01	1999			
cis-1,2-Dichloroethylene	0.006	0.0005	0.013	2018			
trans-1,2-Dichloroethylene	0.01	0.0005	0.05	2018			
Dichloromethane (Methylene chloride)	0.005	0.0005	0.004	2000			
1,2-Dichloropropane	0.005	0.0005	0.0005	1999			
1,3-Dichloropropene	0.0005	0.0005	0.0002	1999 (rev2006)			
Ethylbenzene	0.3	0.0005	0.3	1997			
Methyl tertiary butyl ether (MTBE)	0.013	0.003	0.013	1999			
Monochlorobenzene	0.07	0.0005	0.07	2014			
Styrene	0.1	0.0005	0.0005	2010			
1,1,2,2-Tetrachloroethane	0.001	0.0005	0.0001	2003			
Tetrachloroethylene (PCE)	0.005	0.0005	0.00006	2001			
Toluene	0.15	0.0005	0.15	1999			
1,2,4-Trichlorobenzene	0.005	0.0005	0.005	1999			
1,1,1-Trichloroethane (1,1,1-TCA)	0.2	0.0005	1	2006			
1,1,2-Trichloroethane (1,1,2-TCA)	0.005	0.0005	0.0003	2006			
Trichloroethylene (TCE)	0.005	0.0005	0.0017	2009			
Trichlorofluoromethane (Freon 11)	0.15	0.005	1.3	2014			

1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	1.2	0.01	4	1997 (rev2011)			
Vinyl chloride	0.0005	0.0005	0.00005	2000			
Xylenes	1.75	0.0005	1.8	1997			
(b) Non-Volatile Synthetic Organic Chemicals (SOCs)							
Alachlor	0.002	0.001	0.004	1997			
Atrazine	0.001	0.0005	0.00015	1999			
Bentazon	0.018	0.002	0.2	1999 (rev2009)			
Benzo(a)pyrene	0.0002	0.0001	0.000007	2010			
Carbofuran	0.018	0.005	0.0007	2016			
Chlordane	0.0001	0.0001	0.00003	1997 (rev2006)			
Dalapon	0.2	0.01	0.79	1997 (rev2009)			
1,2-Dibromo-3-chloropropane (DBCP)	0.0002	0.00001	0.000003	2020			
2,4-Dichlorophenoxyacetic acid (2,4-D)	0.07	0.01	0.02	2009			
Di(2-ethylhexyl)adipate	0.4	0.005	0.2	2003			
Di(2-ethylhexyl)phthalate (DEHP)	0.004	0.003	0.012	1997			
Dinoseb	0.007	0.002	0.014	1997 (rev2010)			
Diquat	0.02	0.004	0.006	2016			
Endothal	0.1	0.045	0.094	2014			
Endrin	0.002	0.0001	0.0003	2016			
Ethylene dibromide (EDB)	0.00005	0.00002	0.00001	2003			
Glyphosate	0.7	0.025	0.9	2007			
Heptachlor	0.00001	0.00001	0.000008	1999			
Heptachlor epoxide	0.00001	0.00001	0.000006	1999			
Hexachlorobenzene	0.001	0.0005	0.00003	2003			
Hexachlorocyclopentadiene	0.05	0.001	0.002	2014			
Lindane	0.0002	0.0002	0.000032	1999 (rev2005)			
Methoxychlor	0.03	0.01	0.00009	2010			
Molinate	0.02	0.002	0.001	2008			
Oxamyl	0.05	0.02	0.026	2009			
Pentachlorophenol	0.001	0.0002	0.0003	2009			
Picloram	0.5	0.001	0.166	2016			
Polychlorinated biphenyls (PCBs)	0.0005	0.0005	0.00009	2007			
Simazine	0.004	0.001	0.004	2001			
Thiobencarb	0.07	0.001	0.042	2016			
Toxaphene	0.003	0.001	0.00003	2003			
1,2,3-Trichloropropane	0.000005	0.000005	0.0000007	2009			
2,3,7,8-TCDD (dioxin)	3x10 ⁻⁸	5x10 ⁻⁹	5x10 ⁻¹¹	2010			
2,4,5-TP (Silvex)	0.05	0.001	0.003	2014			
	Chemicals with MCLs in 22 CCR §64533—Disinfection Byproducts						
Total Trihalomethanes	0.080						
Bromodichloromethane		0.0010	0.00006	2020			

Bromoform		0.0010	0.0005	2020	
Chloroform		0.0010	0.0004	2020	
Dibromochloromethane		0.0010	0.0001	2020	
Haloacetic Acids (five) (HAA5)	0.060				
Monochloroacetic Acid		0.0020			
Dichloroacetic Adic		0.0010			
Trichloroacetic Acid		0.0010			
Monobromoacetic Acid		0.0010			
Dibromoacetic Acid		0.0010			
Bromate	0.010	0.0050**	0.0001	2009	
Chlorite	1.0	0.020	0.05	2009	
Chemicals with PHGs established in currently regulated dr				are not	
N-Nitrosodimethylamine (NDMA)			0.000003	2006	
*OEHHA's review of this chemical during the year indicated (rev20XX) resulted in no change in the PHG.					
**The DLR for Bromate is 0.0010 mg/L for analysis performed using EPA Method 317.0 Revision 2.0, 321.8, or 326.0.					

Appendix 2: Health Risk Categories and Cancer Risk Values for Chemicals

Appendix 2: Health Risk Categories and Cancer Risk Values for Chemicals with California Public Health Goals (PHGs)

Chemical	Health Risk Category ¹	California PHG (mg/L) ²	Cancer Risk ³ at the PHG	California MCL⁴ (mg/L)	Cancer Risk at the California MCL
<u>Alachlor</u>	carcinogenicity (causes cancer)	0.004	NA ^{5,6}	0.002	NA
<u>Aluminum</u>	neurotoxicity and immunotoxicity (harms the nervous and immune systems)	0.6	NA	1	NA
<u>Antimony</u>	hepatotoxicity (harms the liver)	0.001	NA	0.006	NA
<u>Arsenic</u>	carcinogenicity (causes cancer)	0.000004 (4×10 ⁻⁶)	1×10 ⁻⁶ (one per million)	0.01	2.5×10 ⁻³ (2.5 per thousand)
<u>Asbestos</u>	carcinogenicity (causes cancer)	7 MFL ⁷ (fibers >10 microns in length)	1×10 ⁻⁶	7 MFL (fibers >10 microns in length)	1×10⁻⁵ (one per million)
<u>Atrazine</u>	carcinogenicity (causes cancer)	0.00015	1×10 ⁻⁶	0.001	7×10 ⁻⁶ (seven per million)

¹ Based on the OEHHA PHG technical support document unless otherwise specified. The categories are the hazard traits defined by OEHHA for California's Toxics Information Clearinghouse (online at:

https://oehha.ca.gov/media/downloads/risk-assessment//gcregtext011912.pdf).

 2 mg/L = milligrams per liter of water or parts per million (ppm)

³ Cancer Risk = Upper bound estimate of excess cancer risk from lifetime exposure. Actual cancer risk may be lower or zero. 1×10^{-6} means one excess cancer case per million people exposed.

⁴ MCL = maximum contaminant level.

⁵ NA = not applicable. Cancer risk cannot be calculated.

⁶ The PHG for alachlor is based on a threshold model of carcinogenesis and is set at a level that is believed to be without any significant cancer risk to individuals exposed to the chemical over a lifetime.

⁷ MFL = million fibers per liter of water.

Chemical	Health Risk Category ¹	California PHG (mg/L) ²	Cancer Risk ³ at the PHG	California MCL⁴ (mg/L)	Cancer Risk at the California MCL
<u>Barium</u>	cardiovascular toxicity (causes high blood pressure)	2	NA	1	NA
<u>Bentazon</u>	hepatotoxicity and digestive system toxicity (harms the liver, intestine, and causes body weight effects ⁸)	0.2	NA	0.018	NA
<u>Benzene</u>	carcinogenicity (causes leukemia)	0.00015	1×10 ⁻⁶	0.001	7×10⁻ ⁶ (seven per million)
Benzo[a]pyrene	carcinogenicity (causes cancer)	0.000007 (7×10 ⁻⁶)	1×10 ⁻⁶	0.0002	3×10 ⁻⁵ (three per hundred thousand)
<u>Beryllium</u>	digestive system toxicity (harms the stomach or intestine)	0.001	NA	0.004	NA
<u>Bromate</u>	carcinogenicity (causes cancer)	0.0001	1×10 ⁻⁶	0.01	1×10 ⁻⁴ (one per ten thousand)
<u>Cadmium</u>	nephrotoxicity (harms the kidney)	0.00004	NA	0.005	NA
Carbofuran	reproductive toxicity (harms the testis)	0.0007	NA	0.018	NA

⁸ Body weight effects are an indicator of general toxicity in animal studies.

Chemical	Health Risk Category ¹	California PHG (mg/L) ²	Cancer Risk ³ at the PHG	California MCL⁴ (mg/L)	Cancer Risk at the California MCL
<u>Carbon</u> tetrachloride	carcinogenicity (causes cancer)	0.0001	1×10 ⁻⁶	0.0005	5×10⁻ ⁶ (five per million)
<u>Chlordane</u>	carcinogenicity (causes cancer)	0.00003	1×10 ⁻⁶	0.0001	3×10⁻ ⁶ (three per million)
<u>Chlorite</u>	hematotoxicity (causes anemia) neurotoxicity (causes neurobehavioral effects)	0.05	NA	1	NA
<u>Chromium,</u> hexavalent	carcinogenicity (causes cancer)	0.00002	1×10 ⁻⁶	none	NA
<u>Copper</u>	digestive system toxicity (causes nausea, vomiting, diarrhea)	0.3	NA	1.3 (AL ⁹)	NA
<u>Cyanide</u>	neurotoxicity (damages nerves) endocrine toxicity (affects the thyroid)	0.15	NA	0.15	NA
<u>Dalapon</u>	nephrotoxicity (harms the kidney)	0.79	NA	0.2	NA
Di(2-ethylhexyl) adipate (DEHA)	developmental toxicity (disrupts development)	0.2	NA	0.4	NA

⁹ AL = action level. The action levels for copper and lead refer to a concentration measured at the tap. Much of the copper and lead in drinking water is derived from household plumbing (The Lead and Copper Rule, Title 22, California Code of Regulations [CCR] section 64672.3).

Chemical	Health Risk Category ¹	California PHG (mg/L) ²	Cancer Risk ³ at the PHG	California MCL⁴ (mg/L)	Cancer Risk at the California MCL
<u>Di(2-ethylhexyl)</u> phthalate (DEHP)	carcinogenicity (causes cancer)	0.012	1×10 ⁻⁶	0.004	3×10 ⁻⁷ (three per ten million)
<u>1,2-Dibromo-3-</u> chloropropane (DBCP)	carcinogenicity (causes cancer)	0.000003 (3x10 ⁻⁶)	1×10 ⁻⁶	0.0002	7×10 ⁻⁵ (seven per hundred thousand)
<u>1,2-Dichloro-</u> <u>benzene</u> (<u>o-DCB)</u>	hepatotoxicity (harms the liver)	0.6	NA	0.6	NA
<u>1,4-Dichloro-</u> <u>benzene</u> (<u>p-DCB)</u>	carcinogenicity (causes cancer)	0.006	1×10 ⁻⁶	0.005	8×10 ⁻⁷ (eight per ten million)
<u>1,1-Dichloro-</u> <u>ethane</u> (<u>1,1-DCA)</u>	carcinogenicity (causes cancer)	0.003	1×10 ⁻⁶	0.005	2×10⁻ ⁶ (two per million)
<u>1,2-Dichloro-</u> <u>ethane</u> (<u>1,2-DCA)</u>	carcinogenicity (causes cancer)	0.0004	1×10 ⁻⁶	0.0005	1×10 ⁻⁶ (one per million)
<u>1,1-Dichloro-</u> <u>ethylene</u> (<u>1,1-DCE)</u>	hepatotoxicity (harms the liver)	0.01	NA	0.006	NA
<u>1,2-Dichloro-</u> ethylene, cis	nephrotoxicity (harms the kidney)	0.013	NA	0.006	NA
<u>1,2-Dichloro-</u> ethylene, trans	immunotoxicity (harms the immune system)	0.05	NA	0.01	NA

Chemical	Health Risk Category ¹	California PHG (mg/L) ²	Cancer Risk ³ at the PHG	California MCL⁴ (mg/L)	Cancer Risk at the California MCL
<u>Dichloromethane</u> (<u>methylene</u> <u>chloride)</u>	carcinogenicity (causes cancer)	0.004	1×10 ⁻⁶	0.005	1×10⁻ ⁶ (one per million)
2,4-Dichloro- phenoxyacetic acid (2,4-D)	hepatotoxicity and nephrotoxicity (harms the liver and kidney)	0.02	NA	0.07	NA
1,2-Dichloro- propane (propylene dichloride)	carcinogenicity (causes cancer)	0.0005	1×10 ⁻⁶	0.005	1×10 ⁻⁵ (one per hundred thousand)
1,3-Dichloro- propene (Telone II®)	carcinogenicity (causes cancer)	0.0002	1×10 ⁻⁶	0.0005	2×10 ⁻⁶ (two per million)
<u>Dinoseb</u>	reproductive toxicity (harms the uterus and testis)	0.014	NA	0.007	NA
<u>Diquat</u>	ocular toxicity (harms the eye) developmental toxicity (causes malformation)	0.006	NA	0.02	NA
<u>Endothall</u>	digestive system toxicity (harms the stomach or intestine)	0.094	NA	0.1	NA
<u>Endrin</u>	neurotoxicity (causes convulsions) hepatotoxicity (harms the liver)	0.0003	NA	0.002	NA
<u>Ethylbenzene</u> (phenylethane)	hepatotoxicity (harms the liver)	0.3	NA	0.3	NA

Chemical	Health Risk Category ¹	California PHG (mg/L) ²	Cancer Risk ³ at the PHG	California MCL⁴ (mg/L)	Cancer Risk at the California MCL
<u>Ethylene</u> dibromide (1,2- Dibromoethane)	carcinogenicity (causes cancer)	0.00001	1×10 ⁻⁶	0.00005	5×10⁻ ⁶ (five per million)
Fluoride	musculoskeletal toxicity (causes tooth mottling)	1	NA	2	NA
<u>Glyphosate</u>	nephrotoxicity (harms the kidney)	0.9	NA	0.7	NA
Heptachlor	carcinogenicity (causes cancer)	0.000008 (8×10 ⁻⁶)	1×10 ⁻⁶	0.00001	1×10 ⁻⁶ (one per million)
Heptachlor epoxide	carcinogenicity (causes cancer)	0.000006 (6×10⁻⁵)	1×10 ⁻⁶	0.00001	2×10⁻ ⁶ (two per million)
<u>Hexachloroben-</u> zene	carcinogenicity (causes cancer)	0.00003	1×10 ⁻⁶	0.001	3×10 ⁻⁵ (three per hundred thousand)
<u>Hexachloro-</u> cyclopentadiene (HCCPD)	digestive system toxicity (causes stomach lesions)	0.002	NA	0.05	NA
<u>Lead</u>	developmental neurotoxicity (causes neurobehavioral effects in children) cardiovascular toxicity (causes high blood pressure) carcinogenicity (causes cancer)	0.0002	<1×10 ⁻⁶ (PHG is not based on this effect)	0.015 (AL ⁹)	2×10 ⁻⁶ (two per million)

Chemical	Health Risk Category ¹	California PHG (mg/L) ²	Cancer Risk ³ at the PHG	California MCL⁴ (mg/L)	Cancer Risk at the California MCL
<u>Lindane</u> (γ-BHC)	carcinogenicity (causes cancer)	0.000032	1×10 ⁻⁶	0.0002	6×10⁻ ⁶ (six per million)
<u>Mercury</u> (inorganic)	nephrotoxicity (harms the kidney)	0.0012	NA	0.002	NA
<u>Methoxychlor</u>	endocrine toxicity (causes hormone effects)	0.00009	NA	0.03	NA
<u>Methyl tertiary-</u> <u>butyl ether</u> (<u>MTBE)</u>	carcinogenicity (causes cancer)	0.013	1×10 ⁻⁶	0.013	1×10 ⁻⁶ (one per million)
<u>Molinate</u>	carcinogenicity (causes cancer)	0.001	1×10 ⁻⁶	0.02	2×10 ⁻⁵ (two per hundred thousand)
<u>Monochloro- benzene</u> (chlorobenzene)	nephrotoxicity (harms the kidney)	0.07	NA	0.07	NA
<u>Nickel</u>	developmental toxicity (causes increased neonatal deaths)	0.012	NA	0.1	NA
<u>Nitrate</u>	hematotoxicity (causes methemoglobinemia)	45 as nitrate	NA	10 as nitrogen (=45 as nitrate)	NA
<u>Nitrite</u>	hematotoxicity (causes methemoglobinemia)	3 as nitrite	NA	1 as nitrogen (=3 as nitrite)	NA

Chemical	Health Risk Category ¹	California PHG (mg/L) ²	Cancer Risk ³ at the PHG	California MCL⁴ (mg/L)	Cancer Risk at the California MCL
<u>Nitrate and</u> <u>Nitrite</u>	hematotoxicity (causes methemoglobinemia)	10 as nitrogen ¹⁰	NA	10 as nitrogen	NA
<u>N-nitroso-</u> dimethyl-amine (NDMA)	carcinogenicity (causes cancer)	0.000003 (3×10 ⁻⁶)	1×10 ⁻⁶	none	NA
<u>Oxamyl</u>	general toxicity (causes body weight effects)	0.026	NA	0.05	NA
<u>Pentachloro-</u> phenol (PCP)	carcinogenicity (causes cancer)	0.0003	1×10 ⁻⁶	0.001	3×10 ⁻⁶ (three per million)
Perchlorate	endocrine toxicity (affects the thyroid) developmental toxicity (causes neurodevelop- mental deficits)	0.001	NA	0.006	NA
<u>Picloram</u>	hepatotoxicity (harms the liver)	0.166	NA	0.5	NA
Polychlorinated biphenyls (PCBs)	carcinogenicity (causes cancer)	0.00009	1×10 ⁻⁶	0.0005	6×10 ⁻⁶ (six per million)
Radium-226	carcinogenicity (causes cancer)	0.05 pCi/L	1×10 ⁻⁶	5 pCi/L (combined Ra ²²⁶⁺²²⁸)	1×10 ⁻⁴ (one per ten thousand)

¹⁰ The joint nitrate/nitrite PHG of 10 mg/L (10 ppm, expressed as nitrogen) does not replace the individual values, and the maximum contribution from nitrite should not exceed 1 mg/L nitrite-nitrogen.

Chemical	Health Risk Category ¹	California PHG (mg/L) ²	Cancer Risk ³ at the PHG	California MCL⁴ (mg/L)	Cancer Risk at the California MCL
<u>Radium-228</u>	carcinogenicity (causes cancer)	0.019 pCi/L	1×10 ⁻⁶	5 pCi/L (combined Ra ²²⁶⁺²²⁸)	3×10 ⁻⁴ (three per ten thousand)
<u>Selenium</u>	integumentary toxicity (causes hair loss and nail damage)	0.03	NA	0.05	NA
<u>Silvex (2,4,5-TP)</u>	hepatotoxicity (harms the liver)	0.003	NA	0.05	NA
<u>Simazine</u>	general toxicity (causes body weight effects)	0.004	NA	0.004	NA
<u>Strontium-90</u>	carcinogenicity (causes cancer)	0.35 pCi/L	1×10 ⁻⁶	8 pCi/L	2×10 ⁻⁵ (two per hundred thousand)
<u>Styrene</u> (vinylbenzene)	carcinogenicity (causes cancer)	0.0005	1×10 ⁻⁶	0.1	2×10 ⁻⁴ (two per ten thousand)
<u>1,1,2,2-</u> Tetrachloro- ethane	carcinogenicity (causes cancer)	0.0001	1×10 ⁻⁶	0.001	1×10 ⁻⁵ (one per hundred thousand)
2,3,7,8-Tetra- chlorodibenzo- <i>p</i> - dioxin (TCDD, or dioxin)	carcinogenicity (causes cancer)	5×10 ⁻¹¹	1×10 ⁻⁶	3×10 ⁻⁸	6×10 ⁻⁴ (six per ten thousand)

Chemical	Health Risk Category ¹	California PHG (mg/L) ²	Cancer Risk ³ at the PHG	California MCL⁴ (mg/L)	Cancer Risk at the California MCL
<u>Tetrachloro-</u> <u>ethylene</u> (perchloro- ethylene, or PCE)	carcinogenicity (causes cancer)	0.00006	1×10 ⁻⁶	0.005	8×10 ⁻⁵ (eight per hundred thousand)
<u>Thallium</u>	integumentary toxicity (causes hair loss)	0.0001	NA	0.002	NA
<u>Thiobencarb</u>	general toxicity (causes body weight effects) hematotoxicity (affects red blood cells)	0.042	NA	0.07	NA
<u>Toluene</u> (methylbenzene)	hepatotoxicity (harms the liver) endocrine toxicity (harms the thymus)	0.15	NA	0.15	NA
<u>Toxaphene</u>	carcinogenicity (causes cancer)	0.00003	1×10 ⁻⁶	0.003	1×10 ⁻⁴ (one per ten thousand)
<u>1,2,4-Trichloro-</u> benzene	endocrine toxicity (harms adrenal glands)	0.005	NA	0.005	NA
<u>1,1,1-Trichloro-</u> ethane	neurotoxicity (harms the nervous system), reproductive toxicity (causes fewer offspring) hepatotoxicity (harms the liver) hematotoxicity (causes blood effects)	1	NA	0.2	NA

Chemical	Health Risk Category ¹	California PHG (mg/L) ²	Cancer Risk ³ at the PHG	California MCL⁴ (mg/L)	Cancer Risk at the California MCL
<u>1,1,2-Trichloro-</u> ethane	carcinogenicity (causes cancer)	0.0003	1x10 ⁻⁶	0.005	2×10 ⁻⁵ (two per hundred thousand)
<u>Trichloro-</u> ethylene (TCE)	carcinogenicity (causes cancer)	0.0017	1×10 ⁻⁶	0.005	3×10 ⁻⁶ (three per million)
Trichlorofluoro- methane (Freon 11)	accelerated mortality (increase in early death)	1.3	NA	0.15	NA
1,2,3-Trichloro- propane (1,2,3-TCP)	carcinogenicity (causes cancer)	0.0000007 (7×10 ⁻⁷)	1x10 ⁻⁶	0.000005 (5×10 ⁻⁶)	7×10 ⁻⁶ (seven per million)
<u>1,1,2-Trichloro-</u> <u>1,2,2-trifluoro-</u> <u>ethane</u> (Freon 113)	hepatotoxicity (harms the liver)	4	NA	1.2	NA
Trihalomethanes: Bromodichloro- methane	carcinogenicity (causes cancer)	0.00006	1x10 ⁻⁶	0.080*	1.3×10 ⁻³ (1.3 per thousand) ¹¹
Trihalomethanes: Bromoform	carcinogenicity (causes cancer)	0.0005	1x10 ⁻⁶	0.080*	2×10 ⁻⁴ (two per ten thousand) ¹²

* For total trihalomethanes (the sum of bromodichloromethane, bromoform, chloroform, and

dibromochloromethane). There are no MCLs for individual trihalomethanes.

¹² Based on 0.080 mg/L bromoform; the risk will vary with different combinations and ratios of the other trihalomethanes in a particular sample.

¹¹ Based on 0.080 mg/L bromodichloromethane; the risk will vary with different combinations and ratios of the other trihalomethanes in a particular sample.

Chemical	Health Risk Category ¹	California PHG (mg/L) ²	Cancer Risk ³ at the PHG	California MCL⁴ (mg/L)	Cancer Risk at the California MCL
<u>Trihalomethanes:</u> <u>Chloroform</u>	carcinogenicity (causes cancer)	0.0004	1x10 ⁻⁶	0.080*	2×10 ⁻⁴ (two per ten thousand) ¹³
Trihalomethanes: Dibromochloro- methane	carcinogenicity (causes cancer)	0.0001	1x10 ⁻⁶	0.080*	8×10 ⁻⁴ (eight per ten thousand) ¹⁴
<u>Tritium</u>	carcinogenicity (causes cancer)	400 pCi/L	1x10 ⁻⁶	20,000 pCi/L	5×10 ⁻⁵ (five per hundred thousand)
<u>Uranium</u>	carcinogenicity (causes cancer)	0.43 pCi/L	1×10 ⁻⁶	20 pCi/L	5×10 ⁻⁵ (five per hundred thousand)
Vinyl chloride	carcinogenicity (causes cancer)	0.00005	1×10 ⁻⁶	0.0005	1×10 ⁻⁵ (one per hundred thousand)
<u>Xylene</u>	neurotoxicity (affects the senses, mood, and motor control)	1.8 (single isomer or sum of isomers)	NA	1.75 (single isomer or sum of isomers)	NA

* For total trihalomethanes (the sum of bromodichloromethane, bromoform, chloroform, and

dibromochloromethane). There are no MCLs for individual trihalomethanes. ¹³ Based on 0.080 mg/L chloroform; the risk will vary with different combinations and ratios of the other trihalomethanes in a particular sample.

¹⁴ Based on 0.080 mg/L dibromochloromethane; the risk will vary with different combinations and ratios of the other trihalomethanes in a particular sample.

Chemical	Health Risk Category ¹	US EPA MCLG ² (mg/L)	Cancer Risk ³ at the MCLG	California MCL ⁴ (mg/L)	Cancer Risk at the California MCL		
Disinfection bypr	oducts (DBPs)						
Chloramines	acute toxicity (causes irritation) digestive system toxicity (harms the stomach) hematotoxicity (causes anemia)	4 ^{5,6}	NA ⁷	none	NA		
Chlorine	acute toxicity (causes irritation) digestive system toxicity (harms the stomach)	45,6	NA	none	NA		
Chlorine dioxide	hematotoxicity (causes anemia) neurotoxicity (harms the nervous system)	0.8 ^{5,6}	NA	none	NA		
Disinfection bypr	Disinfection byproducts: haloacetic acids (HAA5)						
Monochloroacetic acid (MCA)	general toxicity (causes body and organ weight changes ⁸)	0.07	NA	none	NA		

¹ Health risk category based on the US EPA MCLG document or California MCL document unless otherwise specified.

² MCLG = maximum contaminant level goal established by US EPA.

³ Cancer Risk = Upper estimate of excess cancer risk from lifetime exposure. Actual cancer risk

may be lower or zero. 1×10^{-6} means one excess cancer case per million people exposed.

⁴ California MCL = maximum contaminant level established by California.

⁵ Maximum Residual Disinfectant Level Goal, or MRDLG.

⁶ The federal Maximum Residual Disinfectant Level (MRDL), or highest level of disinfectant

allowed in drinking water, is the same value for this chemical.

 7 NA = not available.

⁸ Body weight effects are an indicator of general toxicity in animal studies.

Chemical	Health Risk Category ¹	US EPA MCLG ² (mg/L)	Cancer Risk ³ at the MCLG	California MCL ⁴ (mg/L)	Cancer Risk at the California MCL
Dichloroacetic acid (DCA)	Carcinogenicity (causes cancer)	0	0	none	NA
Trichloroacetic acid (TCA)	hepatotoxicity (harms the liver)	0.02	NA	none	NA
Monobromoacetic acid (MBA)	NA	none	NA	none	NA
Dibromoacetic acid (DBA)	NA	none	NA	none	NA
Total haloacetic acids (sum of MCA, DCA, TCA, MBA, and DBA)	general toxicity, hepatotoxicity and carcinogenicity (causes body and organ weight changes, harms the liver and causes cancer)	none	NA	0.06	NA
Radionuclides					
Gross alpha particles ⁹	carcinogenicity (causes cancer)	0 (²¹⁰ Po included)	0	15 pCi/L ¹⁰ (includes radium but not radon and uranium)	up to 1x10 ⁻³ (for ²¹⁰ Po, the most potent alpha emitter)

⁹ MCLs for gross alpha and beta particles are screening standards for a group of radionuclides. Corresponding PHGs were not developed for gross alpha and beta particles. See the OEHHA memoranda discussing the cancer risks at these MCLs at <u>http://www.oehha.ca.gov/water/reports/grossab.html</u>.

 10 pCi/L = picocuries per liter of water.

Chemical	Health Risk Category ¹	US EPA MCLG ² (mg/L)	Cancer Risk ³ at the MCLG	California MCL ⁴ (mg/L)	Cancer Risk at the California MCL
Beta particles and photon emitters ⁹	carcinogenicity (causes cancer)	0 (²¹⁰ Pb included)	0	50 pCi/L (judged equiv. to 4 mrem/yr)	up to 2x10 ⁻³ (for ²¹⁰ Pb, the most potent beta- emitter)

Appendix 3: Cost Estimates

The cost of treatment can depend upon a number of factors. They include the type of treatment, the number of separate treatment facilities required, and if there are multiple contaminants, whether they can all be removed with one treatment technology or require multiple technologies. The table on the following pages lists the costs to consistently remove the contaminants listed in the previous section to below the PHG or MCLG. Costs include construction and annual operational expenses. These costs are estimates only, and could in fact be much higher.

Appendix 3

Reference: 2012 ACWA PHG Survey

Table 1. COST ESTIMATES FOR TREATMENT TECHNOLOGIES

(INCLUDES ANNUALIZED CAPITAL AND O&M COSTS)

No.	Treatment Technology	Source of Information	Estimated Unit Cost 2012 ACWA Survey Indexed to 2021* (\$/1,000 gallons treated)
1	Ion Exchange	Coachella Valley WD, for GW, to reduce Arsenic concentrations. 2011 costs.	2.40
2	Ion Exchange	City of Riverside Public Utilities, for GW, for Perchlorate treatment.	1.16
3	Ion Exchange	Carollo Engineers, anonymous utility, 2012 costs for treating GW source for Nitrates. Design souce water concentration: 88 mg/L NO ₃ . Design finished water concentration: 45 mg/L NO ₃ . Does not include concentrate disposal or land cost.	0.88
4	Granular Activated Carbon	City of Riverside Public Utilities, GW sources, for TCE, DBCP (VOC, SOC) treatment.	0.58
5	Granular Activated Carbon	Carollo Engineers, anonymous utility, 2012 costs for treating SW source for TTHMs. Design souce water concentration: 0.135 mg/L. Design finished water concentration: 0.07 mg/L. Does not include concentrate disposal or land cost.	0.42
6	Granular Activated Carbon, Liquid Phase	LADWP, Liquid Phase GAC treatment at Tujunga Well field. Costs for treating 2 wells. Treament for 1,1 DCE (VOC). 2011-2012 costs.	1.78
7	Reverse Osmosis	Carollo Engineers, anonymous utility, 2012 costs for treating GW source for Nitrates. Design souce water concentration: 88 mg/L NO ₃ . Design finished water concentration: 45 mg/L NO ₃ . Does not include concentrate disposal or land cost.	0.94
8	Packed Tower Aeration	City of Monrovia, treatment to reduce TCE, PCE concentrations. 2011-12 costs.	0.52
9	Ozonation+ Chemical addition	SCVWD, STWTP treatment plant includes chemical addition + ozone generation costs to reduce THM/HAAs concentrations. 2009-2012 costs.	0.11

COST ESTIMATES FOR TREATMENT TECHNOLOGIES

No.	Treatment Technology	Source of Information	Estimated Unit Cost 2012 ACWA Survey Indexed to 2021* (\$/1,000 gallons treated)
10	Ozonation+ Chemical addition	SCVWD, PWTP treatment plant includes chemical addition + ozone generation costs to reduce THM/HAAs concentrations, 2009-2012 costs.	0.23
11	Coagulation/Filtra tion	Soquel WD, treatment to reduce manganese concentrations in GW. 2011 costs.	0.88
12	•	San Diego WA, costs to reduce THM/Bromate, Turbidity concentrations, raw SW a blend of State Water Project water and Colorado River water, treated at Twin Oaks Valley WTP.	1.00
13	Blending (Well)	Rancho California WD, GW blending well, 1150 gpm, to reduce fluoride concentrations.	0.83
14	Blending (Wells)	Rancho California WD, GW blending wells, to reduce arsenic concentrations, 2012 costs.	0.68
15	Blending	Rancho California WD, using MWD water to blend with GW to reduce arsenic concentrations. 2012 costs.	0.81
16	Corrosion Inhibition	Atascadero Mutual WC, corrosion inhibitor addition to control aggressive water. 2011 costs.	0.10

(INCLUDES ANNUALIZED CAPITAL AND O&M COSTS)

*Costs were adjusted from date of original estimates to present, where appropriate, using the Engineering News Record (ENR) annual average Construction Cost Index of 12,1332021

Appendix 3

Table 2. Reference: Other Agencies

COST ESTIMATES FOR TREATMENT TECHNOLOGIES

(INCLUDES ANNUALIZED CAPITAL AND O&M COSTS)

No.	Treatment Technology	Source of Information	Estimated 2012 Unit Cost Indexed to 2021* (\$/1,000 gallons treated)
1	Reduction - Coagulation- Filtration	Reference: February 28, 2013, Final Report Chromium Removal Research, City of Glendale, CA. 100-2000 gpm. Reduce Hexavalent Chromium to 1 ppb.	1.91 - 11.96
2	IX - Weak Base Anion Resin	Reference: February 28, 2013, Final Report Chromium Removal Research, City of Glendale, CA. 100-2000 gpm. Reduce Hexavalent Chromium to 1 ppb.	1.96 – 8.19
3	IX	Golden State Water Co., IX w/disposable resin, 1 MGD, Perchlorate removal, built in 2010.	0.60
4	IX	Golden State Water Co., IX w/disposable resin, 1000 gpm, perchlorate removal (Proposed; O&M estimated).	1.31
5	IX	Golden State Water Co., IX with brine regeneration, 500 gpm for Selenium removal, built in 2007.	8.57
6	GFO/Adsorption	Golden State Water Co., Granular Ferric Oxide Resin, Arsenic removal, 600 gpm, 2 facilities, built in 2006.	2.24 - 2.39
7	RO	Reference: Inland Empire Utilities Agency : Chino Basin Desalter. RO cost to reduce 800 ppm TDS, 150 ppm Nitrate (as NO3); approx. 7 mgd.	2.93
8	IX	Reference: Inland Empire Utilities Agency : Chino Basin Desalter. IX cost to reduce 150 ppm Nitrate (as NO3); approx. 2.6 mgd.	1.63

9	Packed Tower Aeration	Reference: Inland Empire Utilities Agency : Chino Basin Desalter. PTA-VOC air stripping, typical treated flow of approx. 1.6 mgd.	0.49
10	IX	Reference: West Valley WD Report, for Water Recycling Funding Program, for 2.88 mgd treatment facility. IX to remove Perchlorate, Perchlorate levels 6-10 ppb. 2008 costs.	0.68 - 0.97
11	Coagulation Filtration	Reference: West Valley WD, includes capital, O&M costs for 2.88 mgd treatment facility- Layne Christensen packaged coagulation Arsenic removal system. 2009-2012 costs.	0.45
12	FBR	Reference: West Valley WD/Envirogen design data for the O&M + actual capitol costs, 2.88 mgd fluidized bed reactor (FBR) treatment system, Perchlorate and Nitrate removal, followed by multimedia filtration & chlorination, 2012. NOTE: The capitol cost for the treatment facility for the first 2,000 gpm is \$23 million annualized over 20 years with ability to expand to 4,000 gpm with minimal costs in the future. \$17 million funded through state and federal grants with the remainder funded by WVWD and the City of Rialto.	2.02 – 2.13

* Costs were adjusted from date of original estimates to present, where appropriate, using the Engineering News Record (ENR) annual average Construction Cost Index of 12,133 for 2021.

Appendix 3

Table 3. Reference: Updated 2012 ACWA Cost of Treatment Table

COST ESTIMATES FOR TREATMENT TECHNOLOGIES

No.	Treatment Technology	Source of Information	Estimated 2012 Unit Cost Indexed to 2021* (\$/1,000 gallons treated)
1	Granular Activated Carbon	Reference: Malcolm Pirnie estimate for California Urban Water Agencies, large surface water treatment plants treating water from the State Water Project to meet Stage 2 D/DBP and bromate regulation, 1998	0.69 - 1.31
2	Granular Activated Carbon	Reference: Carollo Engineers, estimate for VOC treatment (PCE), 95% removal of PCE, Oct. 1994,1900 gpm design capacity	0.32
3	Granular Activated Carbon	Reference: Carollo Engineers, est. for a large No. Calif. surf. water treatment plant (90 mgd capacity) treating water from the State Water Project, to reduce THM precursors, ENR construction cost index = 6262 (San Francisco area) - 1992	1.51
4	Granular Activated Carbon	Reference: CH2M Hill study on San Gabriel Basin, for 135 mgd central treatment facility for VOC and SOC removal by GAC, 1990	0.59 - 0.86
5	Granular Activated Carbon	Reference: Southern California Water Co actual data for "rented" GAC to remove VOCs (1,1-DCE), 1.5 mgd capacity facility, 1998	2.71
6	Granular Activated Carbon	Reference: Southern California Water Co actual data for permanent GAC to remove VOCs (TCE), 2.16 mgd plant capacity, 1998	1.75
7	Reverse Osmosis	Reference: Malcolm Pirnie estimate for California Urban Water Agencies, large surface water treatment plants treating water from the State Water Project to meet Stage 2 D/DBP and bromate regulation, 1998	2.036 – 3.89
8	Reverse Osmosis	Reference: Boyle Engineering, RO cost to reduce 1000 ppm TDS in brackish groundwater in So. Calif., 1.0 mgd plant operated at 40% of design flow, high brine line cost, May 1991	4.80
9	Reverse Osmosis	Reference: Boyle Engineering, RO cost to reduce 1000 ppm TDS in brackish groundwater in So. Calif., 1.0 mgd plant operated at 100% of design flow, high brine line cost, May 1991	2.96
10	Reverse Osmosis	Reference: Boyle Engineering, RO cost to reduce 1000 ppm TDS in brackish groundwater in So. Calif., 10.0 mgd plant operated at 40% of design flow, high brine line cost, May 1991	3.20

(INCLUDES ANNUALIZED CAPITAL AND O&M COSTS)

COST ESTIMATES FOR TREATMENT TECHNOLOGIES

(INCLUDES ANNUALIZED CAPITAL AND O&	M COSTS)
(

No.	Treatment Technology	Source of Information	Estimated 2012 Unit Cost Indexed to 2021* (\$/1,000 gallons treated)
11	Reverse Osmosis	Reference: Boyle Engineering, RO cost to reduce 1000 ppm TDS in brackish groundwater in So. Calif., 10.0 mgd plant operated at 100% of design flow, high brine line cost, May 1991	2.48
12	Reverse Osmosis	Reference: Arsenic Removal Study, City of Scottsdale, AZ - CH2M Hill, for a 1.0 mgd plant operated at 40% of design capacity, Oct. 1991	8.04
13	Reverse Osmosis	Reference: Arsenic Removal Study, City of Scottsdale, AZ - CH2M Hill, for a 1.0 mgd plant operated at 100% of design capacity, Oct. 1991	4.75
14	Reverse Osmosis	Reference: Arsenic Removal Study, City of Scottsdale, AZ - CH2M Hill, for a 10.0 mgd plant operated at 40% of design capacity, Oct. 1991	3.55
15	Reverse Osmosis	Reference: Arsenic Removal Study, City of Scottsdale, AZ - CH2M Hill, for a 10.0 mgd plant operated at 100% of design capacity, Oct. 1991	2.20
16	Reverse Osmosis	Reference: CH2M Hill study on San Gabriel Basin, for 135 mgd central treatment facility with RO to remove nitrate, 1990	2.22 - 3.89
17	Packed Tower Aeration	Reference: Analysis of Costs for Radon Removal (AWWARF publication), Kennedy/Jenks, for a 1.4 mgd facility operating at 40% of design capacity, Oct. 1991	1.27
18	Packed Tower Aeration	Reference: Analysis of Costs for Radon Removal (AWWARF publication), Kennedy/Jenks, for a 14.0 mgd facility operating at 40% of design capacity, Oct. 1991	0.68
19	Packed Tower Aeration	Reference: Carollo Engineers, estimate for VOC treatment (PCE) by packed tower aeration, without off- gas treatment, O&M costs based on operation during 329 days/year at 10% downtime, 16 hr/day air stripping operation, 1900 gpm design capacity, Oct. 1994	0.34
20	Packed Tower Aeration	Reference: Carollo Engineers, for PCE treatment by Ecolo-Flo Enviro-Tower air stripping, without off-gas treatment, O&M costs based on operation during 329 days/year at 10% downtime, 16 hr/day air stripping operation, 1900 gpm design capacity, Oct. 1994	0.35
21	Packed Tower Aeration	Reference: CH2M Hill study on San Gabriel Basin, for 135 mgd central treatment facility - packed tower aeration for VOC and radon removal, 1990	0.55 - 0.90

COST ESTIMATES FOR TREATMENT TECHNOLOGIES

No.	Treatment Technology	Source of Information	Estimated 2012 Unit Cost Indexed to 2021* (\$/1,000 gallons treated)
22	Advanced Oxidation Processes	Reference: Carollo Engineers, estimate for VOC treatment (PCE) by UV Light, Ozone, Hydrogen Peroxide, O&M costs based on operation during 329 days/year at 10% downtime, 24 hr/day AOP operation, 1900 gpm capacity, Oct. 1994	0.67
23	Ozonation	Reference: Malcolm Pirnie estimate for CUWA, large surface water treatment plants using ozone to treat water from the State Water Project to meet Stage 2 D/DBP and bromate regulation, <i>Cryptosporidium</i> inactivation requirements,1998	0.15 - 0.32
24	Ion Exchange	Reference: CH2M Hill study on San Gabriel Basin, for 135 mgd central treatment facility - ion exchange to remove nitrate, 1990	0.73 - 0.97

(INCLUDES ANNUALIZED CAPITAL AND O&M COSTS)

* Costs were adjusted from date of original estimates to present, where appropriate, using the Engineering News Record (ENR) annual average Construction Cost Index of 12,133 for 2021.