

Water Quality 101

Demystifying the Consumer Confidence Report

Presented By: Suzanne DeLorenzo, PhD

TABLE OF CONTENTS

- What is a Consumer Confidence Report (CCR)?
- 2 CCR Requirements

3 SJW's 2023 CCR

4 Conclusion
Followed by Q&A

What is a Consumer Confidence Report (CCR)?

A yearly report that provides information about the quality of drinking water in a community.

- Also known as a water quality report or drinking water quality report
- The Environmental Protection Agency (EPA) requires community water systems to provide a CCR to their customers by July 1 each year

Requirements for all CCRs

SJW has produced a CCR every year since 1999

Water System Information

 A brief statement on the source of the water (e.g., rivers, lakes, reservoirs, or aquifers)

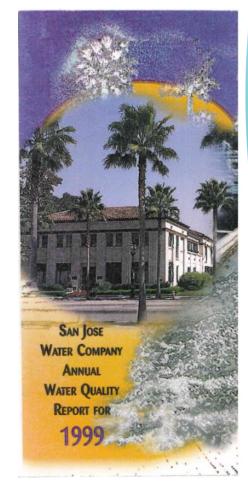
Detected Parameters

- List of all detected regulated contaminants
- Level of those found during the sampling period

Compliance with Drinking Water Standards

- Information on whether the water system has violated any drinking water regulations over the past year
- Explanation of the violations, if any, and any corrective actions taken

Educational Information

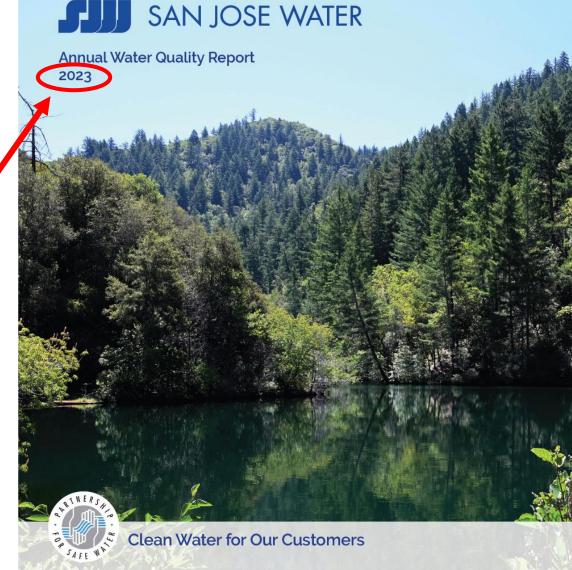

- General information about parameters and potential health effects
- Explanation of terms and abbreviations used in the report

Source Water Assessment Summary

 Summary findings of any source water assessment done to determine the susceptibility of the source water to contamination

Information for Vulnerable Populations

 Infants, pregnant women, the elderly, and those with compromised immune systems



Let's take a walk through this year's report...

SJW's 2023 CCR (Annual Water Quality Report)

Anticipated Release Date: May 2024

- Data included in the report is from sampling conducted in 2023
- Water testing occurs at varying frequencies
 - Daily for some parameters
 - For some parameters, a running annual average if calculated over a year
 - Some parameters are sampled for once a year, once every three years, or longer

This brochure provides a snapshot of last year's water quality data for San Jose Water (SJW). Included are details about where your water comes from and how your water quality compares to State standards. As a member of the Partnership for Safe Water, SJW remains focused on water quality and environmental stewardship to ensure continued delivery of safe and high quality water to our customers.

Since joining the Partnership for Safe Water, SJW has increased distribution system residual disinfectant levels and outperformed industry benchmarks in early detection of leaks and reducing main breaks. These Partnership-related improvements have contributed to increased water service reliability and enhanced public health protection.

Types of Parameters

Primary standards relate to public health.

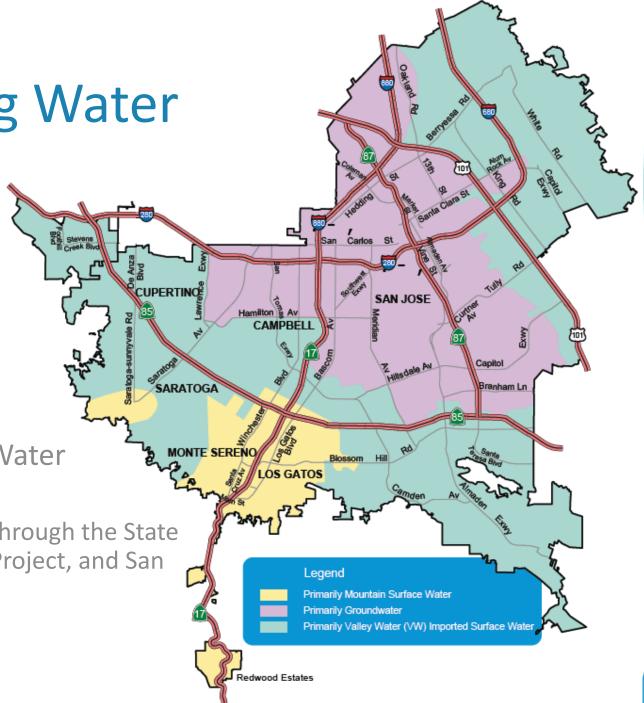
Legally enforceable regulations established by the EPA to protect public health by limiting the levels of contaminants in drinking water

Secondary standards relate to aesthetic qualities such as taste, odor, and color but do not pose any health risk.

Non-enforceable guidelines regarding parameters in drinking water that may cause aesthetic effects (such as taste, odor, or color) rather than health effects

Notification levels are health-based advisory levels that lack public health goals (PHGs).

Health-based advisory levels that, when exceeded, require water systems to notify the state and provide information to their customers about the presence of unregulated contaminants



Sources of Drinking Water

Find your location on the map.

Note which is your source water area.

- Mountain Surface Water
 - Los Gatos Watershed
- Groundwater
 - Local aquifers
- Valley Water Imported Surface Water
 - Snowmelt from the Sierra Nevada
 - Water is brought into the county through the State Water Project, the Central Valley Project, and San Francisco's Hetch Hetchy system

How to read the Water Quality Table

parameter that is allowed in drinking water.

2	3	4	6				6 –			— 7
PARAMETER	UNITS	MCL	PHG OR (MCLG)	MOUNTAIN SU AVERAGE	JRFACE WATER	GROUNI	DWATER RANGE	VW SURFA	CE WATER	TYPICAL
SURFACE WATER PRIOR		ORTANT				ATENAGE	Introd	AVEIUNE	TOTAL	
Cryptosporidium Giardia SURFACE WATER TILEA	Detection The lowes of Public H Maximum of a conta	Limit for Purposes of Rep st level of a constituent tha Health requires to be repor	porting (DLR): at the Department rted. (MCLG): The level below which there	Notification based adviso water that do Contaminant	Level (NL): A non-lory level for contant on not have establish Levels. Systems a s to their governing	ninants in drinking hed Maximum ire required to repo	Nephe ort of the c	TS lometric Turbidity cloudiness of the w rt per million (ppr . One ppm corresp	ater. n) : One milligram	per liter
Turbidity¹	Maximum Level of a c water. Prir (or MCLGs feasible. S taste, and	Environmental Protection Contaminant Level (MCL contaminant that is allowed nary MCLs are set as close as is economically and te econdary MCLs are set to appearance of drinking wa	n Agency. J: The highest d in drinking e to the PHGs echnologically protect the odor, ater.	and MRDLs f with their mo and water tre Public Healt contaminant there is no ki	king Water Standa for contaminants the phitoring and report eatment requirement the Goal (PHG): The in drinking water to nown or expected to by the California E	nat affect health ald ting requirements, ents. level of a pelow which risk to health.	\$10,000 One pa (µg/L). \$10,000 One pa (ng/L).	or one minute in or one ppb corresponding of the ppb corresponding of the ppb corresponding of the ppt corresponding one ppt corresponding one one minute.	two years.): One microgram nds to a single pe te in 1,900 years.): One nanogram p nds to a single pe	per liter enny in per liter nny in
interested in listed.	. Of may not b Maximum The level of a continuous conti	Residual Disinfectant Led disinfectant added for wate e exceeded at consumer's Residual Disinfectant Led of a drinking water disinfect b known or expected risk to	er treatment that s tap. vel Goal (MRDLG): ctant below which o health. MRDLGs	Protection Agentatory Agentatory Agentatory Agentatory Agentation Agentatory Agentation Agentatory Agentation Agentatory	gency. Action Level (AL): 1 nant which, if exce other requirement	The concentration eded, triggers is that a water syst	of radio TON: Ti em of odor	Picocuries per liter vactivity. hreshold Odor Nur (cm : Micromho pe	mber, a measure	
the parameter these units of this column	to control Not Appli Not Detect or above a	ect the benefits of the use microbial contaminants. cable (N/A): Not applicable ted (ND): If a constituent is a DLR, it is reported as ND. cled (NS): Source designate or testing not required.	ile. is not measured at	precautionar are required treatment, or for any water Treatment To	evel (RL): A non-reg y health-based lev to remove from se r notify all impacted r source exceeding echnique (TT): A re reduce the level of	vel. Water systems vrvice, provide d customers direct y this level. equired process		ure of electrical co	nductivity.	ì

Treatment Related Data

PARAMETER	UNITS	MCL	PHG	PHG MOUNTAIN SURFACE WATER		GROUNDWATER		VW SURFACE WATER		TYPICAL	
			OR (MCLG)	AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE	SOURCES	
SURFACE WATER PRIOR	TO TREATMEN	NT									
Cryptosporidium	oocysts/L	тт	(o)	ND	ND - 0.30	N/A	N/A	ND	ND	Naturally found	
Giardia	cysts/L	TT	(0)	0.22	ND - 2.0	N/A	N/A	ND	ND	in the environment.	
SURFACE WATER TREA	SURFACE WATER TREATMENT										
				мах	ІМИМ	MAXIMUM		MAXIMUM			
	NTU TT ≤ 1 NTU		N/A	0.13		0.22		0.3		Erosion of	
Turbidity¹	NTU	TT = 95% of samples ≤ 0.3 NTU	N/A	100%		100%		100%		natural deposits/run- off.	

- Cryptosporidium and Giardia are tested before treatment to guide necessary removal methods at water facilities.
- Turbidity is measured after the water has been treated to verify successful particulate and microorganism removal by treatment.

Entry Point Data

The "entry point to the distribution system" is where treated water leaves the treatment facility and enters the distribution network, serving as a critical sampling location to ensure water meets quality standards before it reaches customers.

PARAMETER	UNITS	MCL	PHG	MOUNTAIN SURFACE WATER		GROUNDWATER		VW SURFACE WATER		TYPICAL
			OR (MCLG)	AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE	SOURCES
ENTRY POINT SAMPLES	;									
INORGANIC MATERIALS	s									
Aluminum	ppm	1	0.6	ND	ND - 0.14	ND	ND - 0.064	ND	ND	
Arsenic	ppb	10	0.004	ND	ND	ND	ND - 4	ND	ND	Erosion of
Barium	ppm	1	2	ND	ND	0.15	ND - 0.32	ND	ND	natural
Chromium-62	ppb	N/A²	0.02	ND	ND	2.9	ND - 6.4	ND	ND	deposits.
Fluoride	ppm	2	1	ND^3	ND - 0.12 ³	ND^3	ND - 0.13 ³	ND	ND - 0.16 ⁴	
Fluoride (treated)⁴	ppm	2	1	N/A	N/A	N/A	N/A	0.8	0.2-0.9	1, 6, 1
Nitrate (as N)	ppm	10	10	ND	ND	3.2	0.6-6.4	0.8	ND - 1.4	

- Inorganic materials are minerals and compounds from natural sources or human activity.
 - Metals, salts, and other mineral-derived compounds.

Distribution System Data

Sample collection in the distribution system is critical for safeguarding water quality and public health throughout the water supply.

SJW DISTRIBUTION SYSTEM SAMPLES									
DISINFECTION MRDL MR				RUNNING					
Total Chlorine	ppm	4.0 as Cl ₂	4 as Cl₂			Added for disinfe			
DISINFECTION BY PRODU	JCTS	MCL	PHG		HIGHEST SITE AVERAGE	RANGE	to control micr		
Total Trihalomethanes	ppb	80	N/A	Samples Collected at Designated	68	ND - 59.63	Byproduct of drinking water		
Haloacetic Acids	ppb	60	N/A	Sample Points:	39	ND - 39.6	disinfection		
MICROBIOLOGICAL CONTAMINANTS		MCL	MCLG		AVERAGE %	HIGHEST MONTHLY %			
Coliform Bacteria	%	> 5% of monthly samples positive	0	Samples Collected at Designated Sample Points:	0.48%	1.03%	Naturally found in the environment.		
LEAD AND COPPER		AL	PHG		90th PERCENTILE LEVEL	SITES ABOVE AL			
Lead	ppb	15	0.2	Samples Collected at	< 5.0	0	Internal		
Copper	ppm	1.3	0.3	Customers' Taps (2022):	0.23	0	Corrosion of Plumbing		

All Standards for Primary Drinking Water MCLs Were Achieved in 2023

Secondary Parameters

Collected from the "entry point to the distribution system" these parameters are monitored due to aesthetic qualities. They affect the taste, odor, and appearance of water.

PARAMETER	UNITS	SMCL	MOUNTAIN SU	JRFACE WATER	GROUN	DWATER	VW SURFACE WATER	
			AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE
Aluminum	ppb	200	ND	ND - 0.14	ND	ND - 0.064	ND	ND
Chloride	ppm	500	20	17-23	54	38-66	42	11 - 64
Color	CU	15	5.5	3-8	ND	ND-10	3.7	1 - 5
Hardness (as CaCO₃)	ppm	N/A	133	107-158	376	210-503	86	37 - 117
Hardness (as CaCO₃)	grains/gal	N/A	8	6-9	22	12 - 29	5	2 - 7
Iron	ppb	300	ND	ND	ND	ND - 230	ND	ND
Manganese	ppb	50	ND	ND - 10	ND	ND - 3.9	6	4 - 10
Odor - Threshold @ 60°C	TON	3	ND	ND	ND	ND	1.8	1.4 - 2.0
Silver	ppb	100	ND	ND	ND	ND	ND	ND
Sodium	ppm	N/A	20	19-20	33	16-52	42	20 - 57
Specific Conductance	µmho/cm	1600	285	260-310	665	430-920	391	188 - 512
Sulfate	ppm	500	27	20-34	59	38-89	56	34 - 78
Total Dissolved Solids	ppm	1000	188	160-210	475	290 - 660	226	115 - 294
Turbidity	NTU	5	0.33	0.1-0.55	0.22	ND - 1.8	0.040	0.01 - 0.3
Zinc	NTU	5	ND	ND - 0.003	ND	ND - 0.19	ND	ND

Mineral Content

Hardness, specific conductance, and Total Dissolved Solids (TDS) are all related in that they are measures of the mineral content of water.

 The higher the levels of these parameters the more minerals are dissolved in the water

Aesthetic issues and scaling

→ Buffer the water and maintain a neutral pH

Help protect pipes and plumbing systems from corrosion and leaching of metals like lead for plumbing materials

 Mineral content is naturally higher groundwater than surface water

Notification Levels

A notification level is a health-based advisory level for certain unregulated contaminants that lack Maximum Contaminant Levels (MCLs) and Public Health Goals (PHGs).

PARAMETER	UNITS	NL	RL	MOUNTAIN SURFACE WATER		GROUNDWATER		VW SURFACE WATER	
				AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE
Boron	ppb	1000	N/A	NS	NS	160 (2019 data)	150 - 160	50	ND - 168
Chlorate	ppb	800	N/A	NS	NS	NS	NS	127	68 - 265
Perfluorohexanesulfonic acid (PFHxS)	ppt	3	20	NS	NS	2.9	ND - 8.8	NS	NS
Perfluorooctanoic Acid (PFOA)	ppt	5.1	10	NS	NS	ND	ND - 2.8	NS	NS
Perfluorooctyl Sulfonate (PFOS)	ppt	6.5	40	NS	NS	2.2	ND - 8.3	NS	NS
Vanadium	ppb	50	N/A	NS	NS	NS	NS	1.7	1 - 3

- The data presented is from all wells, regardless of standby status.
- SJW has been proactively monitoring PFAS compounds in all wells since 2019.
 - 10 wells were placed on standby for exceeding the notification level of 6.5 ppt between 2019 and 2020
- In response to the detection of PFAS at some groundwater wells, SJW is actively working on the design of our first ion exchange PFAS treatment facility.

Conclusion

Your 2023 Water Quality Report will be available May 2024 at www.sjwater.com/ccr

Primary standards relate to public health.

All primary drinking water standards met in 2023.

Secondary standards relate to aesthetic qualities such as taste, odor, and color but do not pose any health risk.

Notification levels are health-based advisory levels that lack public health goals (PHGs).

We thank you for your trust in San Jose Water, and we remain dedicated to delivering excellence in every drop.

A Diversity of Water Sources is Key to Resiliency

- Reduced Dependency on a Single Source
 - Reliance on a single water source can be risky, especially if that source experiences water quality issues, drought, or infrastructure failures.
- SJW can switch or blend sources as needed to ensure continuous supply.

Lake Elsman spillway.

SJW's groundwater and surface water are high quality sources of drinking water that meet or exceed all primary drinking water standards set by regulatory authorities.

